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Abstract— Modern infrastructures such as transportation
and communication networks are large-scale systems with
complex dependence structures between various sub-systems.
Human-interpretable performance targets in such systems are
often represented in terms of lower-dimensional projections of
the high-dimensional state space. We consider the problem of
designing control strategies for high-dimensional systems that
lack a detailed model. To do so, we leverage the ability of
copulas to represent dependant structures in high-dimensional
data, and approximate the state space model through inverse
sampling. We demonstrate the applicability of the control
policies obtained from our methodology through a data-driven
case study of controlling flight delays within the US air
transportation network.

I. INTRODUCTION

Many systems in the transportation, energy, robotics, and
communication network domains have state spaces that are
extremely high-dimensional and contain intricate dependen-
cies. In other words, the system state can be represented
by x ∈ RN×N , where N represents the number of nodes
in the system, and contains possibly nonlinear dependencies
among the elements of x. Large-scale networked systems
therefore yield high-dimensional state space representations,
where each element of the state vector denotes the signal
generated at a particular node.

Systems with high-dimensional state spaces have a few
unique challenges associated with them. First, it is difficult
to develop accurate, high-fidelity models for such large-
scale complex systems, especially when there are no well-
understood physical mechanisms governing the system in-
teractions. Second, these systems typically operate under
extremely noisy conditions requiring vast quantities of histor-
ical data to develop data-driven models. Additionally, these
data-driven models are typically not interpretable, further
reducing the confidence in the predictive performance of
these models. Lastly, it may not be practically feasible to
control every element in such a large-scale system. Thus,
system operators may only be able to prescribe high-level re-
quirements, or set system performance targets in some lower-
dimensional projection of the system state. This requires the
development of unique controllers for each system depending
on the nature of the lower-dimensional performance target
specification.
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A. Motivation and problem description

The focus of this paper is to present a strategy to analyze
and control a high-dimensional (networked) system such that
performance targets in a low-dimensional projected space are
satisfied. For known system dynamics and performance re-
quirements of certain parametric forms (e.g., quadratic costs),
the problem may be analytically solvable (e.g., through LQR
and LQG controllers). However, if the performance target is
of the form h(x) ∈ F , where F is some feasible set, then the
optimization problem is significantly more challenging, and
often analytically intractable. The following example illus-
trates the need for lower-dimensional performance targets:

Example 1 (Flight delays in airport networks). Consider the
network with airports as nodes, the delays at which we wish
to model and control. Interdependencies between different
airports due to flight-propagated delays, weather correla-
tions, and passenger connectivity are complex to model.
Consequently, it is difficult to develop a precise and accurate
model for delays at each of the airports. Furthermore, system
operators often only consider aggregate performance targets
such as the total delay (i.e., the sum of all airport delays),
the spatial distribution of delays across the network, or the
variance of airport delays. When the system is disrupted, the
system operator may want to drive the system to some desired
configuration that satisfies aggregate performance targets.

As a system expands in scale and complexity, its dynamics
become more difficult to model. Consequently, an approach
based on a lower-dimensional performance measure may be
more interpretable and implementable in practice.

B. Our approach

Our proposed solution consists of two main components,
namely, (1) generate a set of feasible high-dimensional states,
and (2) map a desired trajectory satisfying performance
targets in a lower-dimensional projection back to the high-
dimensional state space. Figure 1 presents a flowchart de-
picting our framework. The first step uses a limited number
of state observations and a multivariate Gaussian copula
to represent the set of feasible high-dimensional system
states. Copulas provide a way of relating the multivariate
joint distributions to the univariate marginal distributions [1],
and hence enable us to separately estimate the dependant
structures in the multivariate distribution of the system
state. The second step of our framework ensures trajectory
conformance to lower-dimensional performance targets, and
identifies the corresponding high-dimensional trajectory via
an optimization subroutine. Our framework can accommo-
date a large class of lower-dimensional projections and is



flexible in terms of the objective function and cost structure
for the optimization subroutine. This flexibility allows our
framework to be generalized to a wide range of applications.
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Fig. 1. Flowchart of the proposed approach.

C. Prior work

System identification tools can be used to develop models
based on the observed input and output [2], [3]. However,
many applications (including air traffic networks) are not
amenable to these methods due to insufficient numbers of ob-
servations considering system complexity, noise, and dimen-
sionality. Reduced-order models, which consider a lower-
dimensional representation of the system, are a promising
alternative to conventional system identification [4], [5]. The
control of systems using reduced-order models has been
widely studied [6], [7]. Although such reduced-order models
could be used in the analysis of any high-dimensional sys-
tem, our work focuses on using an optimization formulation
to map a desired control trajectory from a low-dimensional
space to a higher-dimensional state space using a multivariate
Gaussian copula approximation.

Copulas provide a way to represent any multivariate
distribution in terms of univariate marginal distributions of
variables and the dependence structure (or copula) [8]. They
have been widely-used in finance, e.g., risk management and
option pricing [9], [10], regression estimation and inference
[11], information retrieval [12], and generating latent space
models [13]. The use of copulas for representing the states of
a dynamical systems is a more recent line of work. Methods
to construct state spaces from copulas [14] and to model
parametric state space models (e.g., linear Gaussian) using
inversion copulas [15] have been explored. In contrast to
these prior works, our approach is non-parametric and uses a
small set of historical observations to identify an appropriate
copula that represents the high-dimensional state space.

The control of delays in airport networks has been a
longstanding problem [16]. The use of low-dimensional,
human-interpretable performance measures (e.g., total delay,
spatial distribution of delays, see [17]) in a large-scale system
makes this an ideal setting for our methodology.

D. Contributions

Our main contributions are two-fold:
(1) We develop a method to identify a sequence of fu-

ture states and associated control actions for high-
dimensional systems based on performance targets in
a lower-dimensional space (Section III).

(2) We demonstrate how our approach can be used to
drive the evolution of airport delays in accordance with
aggregate performance targets, and discuss how it may
be generalized to other networked settings (Section IV).

II. MATHEMATICAL PRELIMINARIES

A. Notation

In this paper, boldface characters (e.g., x, U) indicate vec-
tors, while a non-boldfaced equivalent with subscript i (e.g.,
xi, Ui) indicates the ith element of the corresponding vector.
Superscript indices in parentheses indicate the observation
index. Random variables are capitalized, and their lower-
case counterparts indicate a realization. The functions f and
F with random variables attached in subscripts indicate the
probability density function (pdf) and cumulative distribution
function (cdf), respectively. The space of symmetric positive
semi-definite matrices of size N is denoted SN×N�0 .

Suppose that we have a data set consisting of M ob-
servations, OM =

{
x(1), . . . ,x(l), . . . ,x(M)

}
⊂ X , where

X ⊂ RN×1 denotes the space of feasible states. Then,
x(l) ∈ OM can be viewed as a realization of a multivariate
random variable X = (X1, . . . , XN ) ∈ RN×1 with cdf
FX(x) = P (X1 ≤ x1, . . . , XN ≤ xN ).

B. Representing multivariate cdfs using copulas

We provide the formal definition of a copula, and state
Sklar’s Theorem, which says that any multivariate cdf can
be expressed by its marginals and an appropriate copula.

Definition 1 (N -dimensional copula). An N -dimensional
copula, denoted by C : [0, 1]N → [0, 1], is a cdf C(u) =
C (u1, . . . , uN ) describing a random variable U ∈ [0, 1]N .
C(u) is a copula if, and only if, it satisfies the following
properties:

(i) C(u) is non-decreasing in each component ui.
(ii) The ith marginal distribution of C(u), obtained by

setting uj = 1,∀j 6= i, is equal to the cdf of a standard
uniform random variable.

(iii) For scalars ai ≤ bi, we have that

P

(
N⋂
i=1

ai ≤ Ui ≤ bi

)
= C(b1, . . . , bN )−C(a1, . . . , aN ).

Theorem 1 (Sklar’s Theorem [8]). Consider a N -
dimensional cdf FX with marginals FX1

, . . . , FXN
. Then,

there exists a copula C such that FX(x1, . . . , xN ) =
C (FX1(x1), . . . , FXN

(xN )) for all xi ∈ R ∪ {−∞,∞}
and i = 1, . . . , N . Furthermore, if FXi

is continuous for
all i = 1, . . . , N , then the copula C is unique.

Sklar’s theorem guarantees the unique existence of a cop-
ula corresponding to any continuous multivariate distribution.



It forms the basis of several algorithms for estimating the
copula from data. This process typically uses parametric
or non-parametric techniques to sequentially estimate the
marginal distributions and the copula function.

C. State space description of a system

Given a networked system, we abstract the N signal-
generating members of the system as vertices (the set V ), and
encode relationships between members i and j as weighted,
undirected edges (i, j) = (j, i) ∈ E ⊆ V × V . The vertices
and edges constitute a graph G = (V,E), and a signal
supported on vertex i is xi ∈ R. We denote observation l
of the vector of signals generated from this system, i.e., its
state, by x(l) ∈ RN×1, with x(l) =

(
x
(l)
1 , . . . , x

(l)
N

)ᵀ
. If x(l)

was observed historically, then x(l) ∈ X . We assume no other
information about X , apart from the historical observations.

III. METHODOLOGY

A. Estimating multivariate Gaussian copulas from data

We use a kernel density estimator to construct continuous
marginal distributions, and find the copula density c(u) by
taking the appropriate partial derivatives of C(u):

c(u1, . . . , uN ) =
∂N

∂u1 · · · ∂uN
C(u1, . . . , uN ). (1)

From Sklar’s Theorem, we can rewrite the unknown pdf fX

as the product of the copula density in (1) and the marginal
density functions fXi , as shown in (2). We then estimate fX

through maximum likelihood estimation using OM .

fX(x) =
∂N

∂x1 · · · ∂xN
FX(x1, . . . , xN )

=
∂N

∂u1 · · · ∂uN
C

FX1(x1)︸ ︷︷ ︸
u1

, . . . , FXN
(xN )︸ ︷︷ ︸
uN


×∂FX1

(x1)

∂x1
· · · ∂FXN

(xN )

∂xN

= c(u)
N∏
i=1

fXi
(xi). (2)

Suppose the copula is parameterized by Θ, denoted by
c(u; Θ). Let ` (Θ;OM ) denote the log-likelihood of (2)
with respect to the copula parameter, Θ, and historical state
observations, OM . We have that

` (Θ;OM ) =

M∑
k=1

ln c
(
FX1

(x
(k)
1 ), . . . , FXN

(x
(k)
N ); Θ

)
+

M∑
k=1

N∑
i=1

ln fXi

(
x
(k)
i

)
. (3)

Note that the log-likelihood is only over the copula
parameter Θ. Since we have no information regarding
parameterizations of marginal densities or cdf, we utilize
the canonical maximum likelihood (CML), where empirical
marginal distributions are first estimated based on OM , and
these empirical marginal distributions are used to transform

observations in OM to uniform variates via the probability
integral transform. Under CML estimation, (3) reduces to

Θ̂ = argmax
Θ∈M

M∑
k=1

ln c
(
û1

(k)
, . . . , ûN

(k)
; Θ
)
, (4)

where M is the space of copula parameters, and ûi
(k) =

F̂Xi

(
x
(k)
i

)
is computed as the probability integral transform

with an empirical estimate F̂Xi at each vertex i, given by
the kernel density estimator in (5) with bandwidth h and
the standard normal density function φ(t) as the smoothing
kernel. Therefore,

F̂Xi (xi) =
1

M

M∑
k=1


∫ xi−x

(k)
i

h

−∞
φ(t) dt

 . (5)

Now that we are able to consider a wide range of empirical
marginal distributions, we impose a dependence structure
by choosing a family of copulas over which we can carry
out the CML estimation in (4). There are a variety of
parametric copula families for bivariate distributions [1]; for
multivariate distributions, the most flexible is the multivariate
Gaussian copula, along with other possibilities such as t- and
vine-based copulas [14]. We use CML to fit a multivariate
Gaussian copula C (u;ρ) with the cdf and density c (u;ρ):

C (u;ρ) = Φρ

(
Φ−1 (u1) , . . . ,Φ−1 (uN )

)
,

c (u;ρ) = det (ρ)
− 1

2 exp

(
−1

2
Ξᵀ
(
ρ−1 − IN×N

)
Ξ

)
,

where Φρ is a standardized multivariate normal distribution
with correlation matrix ρ ∈ SN×N�0 having unit diagonals,
Φ−1 is the inverse cdf for a standard normal distribution,
Ξ =

(
Φ−1 (u1) , . . . ,Φ−1 (uN )

)ᵀ
, and IN×N is the N ×N

identity matrix. Given our choice of the multivariate Gaus-
sian copula, Θ = ρ and M = SN×N�0 , the CML estimation
problem in (4) becomes

ρ̂ = argmax
ρ∈SN×N

�0

{
−M

2
ln det (ρ)− 1

2

M∑
k=1

Ξ̂(k)ᵀρ̃ Ξ̂(k)

}
, (6)

over valid correlation matrices, with ρ̃ = ρ−1 − IN×N and
Ξ̂(k) =

(
Φ−1

(
û1

(k)
)
, . . . ,Φ−1

(
ûN

(k)
))ᵀ

.

After obtaining ρ̂ from (6), we draw M̃ samples resid-
ing in [0, 1]N from C (u; ρ̂), where M̃ � M . We refer
to these samples

{
u(1), . . . ,u(M̃)

}
as simulated observa-

tions drawn from the fitted multivariate Gaussian copula
C (u; ρ̂). We transform these simulated observations back in
conformance with OM via the inverse probability integral
transform, through the inverse of the empirical marginal
distributions found via (5). With a slight overload on no-
tation, we denote these transformed simulated observations
as copula-simulated state observations, and define the set
X̂ :=

{
x(1), . . . ,x(M̃)

}
as the approximate space of feasible

states. To avoid confusion, we denote the lth historical state
observations in OM as x

(l)
OM

, in contrast to x(l), the lth

copula-simulated state observation from X̂ .



B. Projection-based control

Recall that the objective of our projection-based control
is to drive the system from some currently observed state
x
(0)
OM
∈ X through a sequence of desired intermediate states.

Throughout the sequence, we only dictate performance tar-
gets in a lower-dimensional space. In our case, we chose to
use a R2-projection of X ∪ X̂ spanned by the 1-norm of the
state vector ‖x‖1 and its total variation (TV) with respect
to the graphical system abstraction G.

Definition 2. The total variation of the state vector x sup-
ported on the vertices of a graph with a weighted adjacency
matrix A = [aij ], corresponding degree matrix D = [dij ]
with dii =

∑
j aij and 0 otherwise, and corresponding

combinatorial graph Laplacian L = D −A, is given by

TV(x) =
1

2

∑
i 6=j

aij (xi − xj)2 = xᵀLx. (7)

The choice of ‖x‖1 is motivated by the fact that in
positive signal-generating systems, this metric captures the
total magnitude of signals across the entire system (e.g., the
total delay in an airport network). The choice of TV(x) =
xᵀLx reflects the fact that TV can be interpreted as a
measure of signal smoothness, and has been used for outlier
detection in graph signals [17]. Our projection-based control
framework is agnostic to the specific choice of metrics; any
reasonable set of low-dimensional metrics that captures key
system performance characteristics may be used.

We define the projection projR2 : RN×1 → R2×1 that
maps x ∈ X ∪ X̂ to

(
‖x‖1 ,

√
TV(x)

)
. Note that the

square root on TV ensures comparable units between the
1-norm and TV, which is a quadratic form in x. The
use of

√
TV(x) simplifies the task of defining geometric

constraints in im
(

projR2 X ∪ X̂
)

. Let x
(0)
OM

be the initial
state of the system that has been observed, i.e., we have full
knowledge of all signals x(0)i . We can compute its projection
in our low-dimensional space as

projR2

(
x
(0)
OM

)
=

(∥∥∥x(0)
OM

∥∥∥
1
,

√
TV

(
x
(0)
OM

))
. (8)

Recall that our goal is to drive the system from x
(0)
OM

to some unknown terminal state x(T ) via unknown inter-
mediate states x(t) in discrete time steps t = 1, . . . , T −
1, by only constraining the R2-projected system metrics
projR2

(
x(1)

)
, . . . ,projR2

(
x(T )

)
to preset performance tar-

gets. In other words, we do not specify any entries x
(t)
i

in x(t),∀t = 1, . . . , T , and instead consider all candidate
copula-simulated state observations x

(t)
candidate ∈ X̂ that satisfy

some performance target in the R2-projected space, i.e., some
constraint on projR2

(
x
(t)
candidate

)
and projR2

(
x(t)

)
.

Let us consider an example of a geometric constraint on
im
(

projR2 X ∪ X̂
)

that could be used to ensure a specific
type of conformance to performance targets in the R2-
projected space. We first select performance target anchors

a(t) ∈ im
(

projR2 X̂
)
,∀t = 1, . . . , T . We assume that, via

the copula-based state space estimation described earlier in
Section III-A, the number of copula-simulated state observa-
tions M̃ was large enough such that im

(
projR2 X̂

)
is dense

around anchors a(t). Formally, let B ((x1, x2); ε) be a ball
in R2 with radius ε centered at (x1, x2). Then, for a small
positive radius ε > 0, there exists a M̃ε =

∣∣∣X̂ ∣∣∣ such that

B (a(t); ε) ∩ im
(

projR2 X̂
)
6= {∅} . (9)

The anchors a(t) are the prescribed system performance
targets projR2

(
x(t)

)
that candidate copula-simulated states

x
(t)
candidate ∈ X̂ must adhere to at each corresponding time step
t. We then solve the optimization problem in (10), where
the geometric constraint encodes our requirement that the
candidate copula-simulated states do not deviate more than
δt > 0 in Euclidean norm from anchor a(t) at time step t.

x
(t)
∗ : argmin

x(t)∈X̂

∥∥∥x(t) − x
(t−1)
∗

∥∥∥
2

s. t. δt ≥
∥∥a(t)− projR2

(
x(t)

)∥∥
2

x
(0)
∗ = x

(0)
OM

∀t = 1, . . . , T.

(10)

The objective function reflects the fact that projR2 is
surjective, i.e., multiple candidate copula-simulated states
could feasibly satisfy the geometric constraint. Although we
do not know the underlying state dynamics from t to t+ 1,
assuming we select a reasonable time-step, we prefer small
changes at each vertex signal x(t)i . These assumptions are
reasonable in real applications: For example, if we assume
that the duration between time steps is 1-hour, we should not
expect large variations in the delays at a particular airport,
given the persistent nature of most disruptions (e.g., a slow-
moving snowstorm). The objective function in (10) retrieves
the current state that needs a minimal-energy evolution from
the fully-known previous state, x

(t−1)
∗ . Note that x

(t−1)
∗ is

fully known because it is either the solution to the preceding
optimization, or the known initial condition x

(0)
∗ = x

(0)
OM

.

We define T∗ :=
{

x
(0)
∗ = x

(0)
OM

,x
(1)
∗ , . . . ,x

(T )
∗

}
as the

extrapolated system state trajectory starting at x
(0)
∗ = x

(0)
OM

,
obtained from solving (10) at each time step t = 1, . . . , T .
The control policy π

(t)
∗ at time t = 0, . . . , T − 1 is simply

π
(t)
∗ = x

(t+1)
∗ −x

(t)
∗ , with the initial condition x

(0)
∗ = x

(0)
OM

.
We note that for the setup in (10), it is possible to define a
feasible set on the space of control actions by observing that

πmin �R π
(t)
∗ �R πmax, (11)

where �R is the element-wise inequality, πmin =
(πmin,1, · · · , πmin,N )ᵀ, and πmax = (πmax,1, . . . , πmax,N )ᵀ,
with

πmin,i = inf
{
x
(τ)
i − x

(σ)
i

∣∣x(τ)i , x
(σ)
i ∈ X ∪ X̂

}
,

πmax,i = sup
{
x
(τ)
i − x

(σ)
i

∣∣x(τ)i , x
(σ)
i ∈ X ∪ X̂

}
.
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Fig. 2. Pictorial representation of our methodology.

C. Discussion

1) Interpretation and generalizability : Our framework
provides a control policy for a dynamical system whose
precise model is not known. Our two-step approach of
first generating an approximate feasible state space, and
then mapping low-dimensional performance targets and high-
dimensional states through optimization is a proxy for some
dynamics x(t) = h

(
x(t−1)), where h is state-dependent.

The optimization procedure in (10) can be thought of as a
pseudo-inverse projection proj−1R2 : R2×1 → X̂ which selects
a unique high-dimensional system state (since the objective
function in (10) is convex) from the copula-approximated
state space that satisfies performance target constraints. The
proposed framework (Fig. 1) can be adapted to a range of
general applications, as discussed in Section IV-C.

2) Technical remarks and caveats : When choosing the
low-dimensional R2-projected trajectory that satisfies per-
formance targets, we use a greedy approach at each time
step in (10). We could have alternatively constructed a
set of trajectory options, and then performed a breadth-
or depth-first search to select one with the lowest cost.
Furthermore, even though the projection operator projR2

we use is smooth and continuous, these are sufficient, but
may not be necessary, conditions. The characterization of
necessary and sufficient conditions on projR2 such that small
perturbations in the low-dimensional projection space do
not result in large perturbations in X ∪ X̂ is an interesting
question for future research.

It is important to bear in mind that copulas cannot provide
more information than what is encoded in the historical
observations. They should not be interpreted as stochastic
processes. They also do not capture any time-varying infor-
mation; they are merely a particular form of a multivariate
probability distribution. We account for time-varying depen-
dence structures in our case study by calibrating different
copulas for different hours of the day.

IV. AIRPORT DELAY NETWORK EXAMPLE

A. Redistributing airport delays with conservation con-
straints

Let T =
{

x
(0)
OM

, . . . ,x
(T )
OM

}
⊆ OM be a sequence of

observed system states that begin at time t = 0 and evolve

until time t = T . In our air traffic network application, we
could have a historical trajectory T that describes the state of
airport delays from 6 a.m. until 10 a.m., in 1-hour intervals,
in which case we would have T = 4. We can project each
observed airport delay state x

(t)
OM

onto the R2-space from

before via x
(t)
OM
7→
(∥∥∥x(t)

OM

∥∥∥
1
,
√

x
(t)ᵀ
OM
Lx

(t)
OM

)
, and track

the airport delays in terms of their total magnitude and spatial
distribution across the airport network.

The proposed projection-based control framework can ad-
dress the following operationally-important question: Could
the airport delays be redistributed in a manner that preserves
the total magnitude of delays (conservation of delays), but
alleviates delay accumulation at specified airports? This
question translates to controlling the system in the projected
R2-space, and setting constraints on the 1-norm component.
Our formulation for this problem is given by (12), where
x
(t)
∗ is the solution to:

arg min
x(t)∈X̂

{∥∥∥x(t) − x
(t−1)
∗

∥∥∥
2

+ λ
∥∥∥x(t) − x

(t)
OM

∥∥∥
2

+(1− λ)cᵀ
(
x(t) − x

(t)
OM

)}
s. t.

∥∥x(t)
∥∥
1
≥
∥∥∥x(t)
OM

∥∥∥
1
− δ,∥∥x(t)

∥∥
1
≤
∥∥∥x(t)
OM

∥∥∥
1

+ δ,

x
(0)
∗ = x

(0)
OM

,
λ ∈ [0, 1],
∀t = 1, . . . , T.

(12)
Given the historical observation x

(t)
OM

, we search for an
alternative state x

(t)
∗ ∈ X̂ from the copula-based sampling

approximation of the feasible state space which minimizes
the objective in (12). The first term of the objective function
penalizes sudden transitions from the previous state, while
the second term penalizes alternative states that deviate from
their historical counterpart. The last term rewards delay re-
ductions at specified airports via an appropriately-structured
cost vector c ∈ RN×1 given by (13), with S representing the
subset of airports at which delay reductions are encouraged:

c = [ci] =

{
1 if i ∈ S ⊆ V
0 otherwise.

(13)

The λ parameter can be adjusted to weight historical con-
formity versus redistribution. The conservation constraint is
on the 1-norm, and reflects the fact that system operators
cannot simply remove delays without mechanisms such as
flight cancellations.

B. Redistributing delay away from New York City airports

We apply (12) to an 11-hour long historical trajectory T�,
observed from 1 p.m. EDT on May 22 to 12 a.m. on May
23, 2014. Our networked system consists of |V | = 30 busiest
US airports in terms of passenger enplanements. The vector
of airport delays and the delay at airport i at hour t are x(t)

and x(t)i , respectively. The graph representation of the system
is a complete, undirected correlation network, where edges



are weighted by the sample Pearson correlations between
the hourly airport delays. Since airport delays are strongly
dependent on the hour-of-day (e.g., because of heavy traffic
during the morning and afternoon periods), we construct 24
different approximate state spaces X̂0, . . . , X̂τ , . . . , X̂23, each
from a copula model based on historical observations of
x(t) belonging to hour τ . Similarly, we have 24 different
graph Laplacians L0, . . . ,Lτ , . . . ,L23, corresponding to the
different hourly airport delay correlation networks. We use
airport delay data for the 10-year period from 2008 through
2017 to construct X̂τ . Therefore, M = 3, 653 for each hour-
category, τ . We sample M̃ = 50, 000 � M from each
copula model in order to construct X̂τ , for all τ = 0, . . . , 23.

Starting with the airport delay state vector x
(0)
∗ = x

(0)
T�
∈

T� at 1 p.m. EDT, we solve (12) for t = 1 (2 p.m. EDT)
through t = 11 (midnight EDT), with the slight modification
that the minimization is performed over the appropriate X̂τ
such that the hour category of τ matches that of the current
time step t. We select a δ-tolerance of

δ = 0.01×max
{∥∥∥x(t)

T�

∥∥∥
1

∣∣∣x(t)
T�
∈ T�

}
.

For this example, δ ≈ 19.6 minutes, which is negligible in
comparison to the total system delay. In essence, the delay-
conservation constraints in (12) are enforced. We configure
our cost vector c in accordance with (13) using S =
{EWR, JFK, LGA} ⊂ V . In other words, we configure
the third term in (12) to reward control policies that shift
delay away from the three New York City (NYC) airports.
Finally, we repeat the entire sequence of optimizations for
differing λ = {0, 0.5, 1} . In this context, λ = 0 represents
maximal efforts to shift delay away from the NYC airports
with no penalties on not adhering to the historical trajectory
T�, whereas λ = 1 represents maximal adherence to the
historical trajectory with no preference on redistributing
delay away from the NYC airports. Decreasing λ is a proxy
for increasing the workload of air traffic flow managers, since
it requires greater efforts towards delay redistribution.

Fig. 3. R2-projected historically observed state trajectory (blue) and delay-
conserved alternate state trajectory (red) with λ = 1 (maximal historical
adherence).

We plot the R2-projected state trajectories in Figures 3
and 4 for λ = 1 and 0, respectively. Note that at each time

Fig. 4. R2-projected historically observed state trajectory (blue) and delay-
conserved alternate state trajectory (red) with λ = 0 (maximal selective
delay redistribution).

step, the horizontal displacement between the R2-projected
historical state (yellow diamonds) and R2-projected sug-
gested state (cyan dots) is minimal, indicating that delay is
conserved. We also observe, as expected, that for λ = 1,
the suggested R2-projected trajectory T∗ closely mirrors the
historical R2-projected trajectory. On the other hand, for
λ = 0, even though delay conservation is still enforced, the
R2-projected state trajectories are quite different, indicating
that delay redistribution is occurring over the set of airport
vertices.

We plot the signals x(t)EWR, x(t)JFK, and x
(t)
LGA for the entire

11-hour period, for all four state trajectories (baseline case,
i.e., x

(t)
T�
∈ T�, and x

(t)
∗ ∈ T∗ for λ = {1, 0.5, 0}) in Figure

5. For all three NYC airports (and all other airport vertices),
λ = 1 strongly penalizes large values of

∥∥∥x(t)
∗ − x

(t)
T�

∥∥∥
2
, so

we observe adherence to the baseline delay values for x(t)EWR,
x
(t)
JFK, and x(t)LGA. By setting λ = 0, the effects of selectively

redistributing delay away from EWR, JFK, and LGA are
very pronounced, as exhibited by much lower values for
x
(t)
EWR, x(t)JFK, and x(t)LGA compared to the baseline delay values.

However, we know from the R2-projected state trajectories
as well as the delay-conservation constraints in (12) that
the total delay in the network must be conserved (within
tolerance δ) at all time steps t. This indicates that, for λ = 0,
the optimized control policy redistributed delay away from
the NYC airports, and to the other airports in the network.

C. Generalizability of our framework

We conclude our case study example by highlighting five
aspects of versatility provided by our framework: (1) the
choice and selection of a copula family; (2) the form of the
objective function; (3) the cost structure; (4) the constraints
enforcing low-dimensional performance targets; and (5) the
choice of projection metrics. In terms of (1), although we
chose to use the family of multivariate Gaussian copulas,
there have been interesting results on copula goodness-of-fit
testing [18] and avoiding copula family misspecification [19].
While copula family selection is outside the scope of this



Fig. 5. Delay signals x
(t)
EWR, x(t)JFK, and x

(t)
LGA at EWR, JFK, and

LGA, respectively, across three separate solutions of (12) with differing
λ parameter values.

work, our framework only requires that a copula is available
to be sampled from, regardless of its specific family.

With regards to (2)-(5), we note that the optimization
problem (12) for the airport delay network example was
readily extendable from (10). Suppose, instead, that we want
to prescribe control actions over a bike-share network, where
certain vertices (bike stations) are rewarded for maintaining
a steady inventory of bikes during the bike redistribution
process. We could easily adapt a version of this problem
from (12) by changing the sign on the third term of the
objective function. Furthermore, we could assign priorities
to different vertices by switching to a non-binary cost vector
in (13). Now suppose that the bike-share system operator
has access to bike depots located around the city, effectively
allowing for a certain number of sink- and source-vertices
in the network. This new degree of freedom can be captured
by relaxing the conservation constraints in (12), i.e., by
choosing a more lenient buffer, δ. Lastly, our choice of
projR2 was made based on our preference of two aggregate
system performance measures; the system operator could
alternatively choose a modified p̃rojR2 that captures other
aggregate performance measures. Some canonical examples
would include E

[
x(t)

]
, Var

[
x(t)

]
, and

∥∥x(t)
∥∥
∞.

V. CONCLUDING REMARKS

We demonstrated the ability of copulas to provide an
observable approximation for the feasible state space of a
complex system that has intricate dependence structures,
as well as different distributions of sub-system behavior.
In particular, copulas provide a way to separate estimating
marginal distributions and estimating dependence structures.
We fit historical state observations to the family of multivari-

ate Gaussian copulas, and constructed an approximate state
space through copula sampling and the inverse probability
integral transform. We then proposed a control framework for
large-scale networks that sets performance targets in a lower-
dimensional projection of the full state space, and provides
future system states by selecting from candidate states in
the copula-approximated state space. We demonstrated the
applicability of our proposed methodology through a case
study of flight delays in the US airport network, as well as
its effectiveness in selectively redistributing airport delays
away from a particular subset of airports. A question of
ongoing interest relates to the sample complexity of our
copula-approximated state space.
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